Skip to main content
Log in

Water-based sol–gel nanocrystalline barium titanate: controlling the crystal structure and phase transformation by Ba:Ti atomic ratio

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Highly stable, water-based barium titanate (BaTiO3) sols were developed by a low cost and straightforward sol–gel process. Nanocrystalline barium titanate thin films and powders with various Ba:Ti atomic ratios were produced from the aqueous sols. The prepared sols had a narrow particle size distribution in the range 21–23 nm and they were stable over 5 months. X-ray diffraction pattern revealed that powders contained mixture of hexagonal- or perovskite-BaTiO3 as well as a trace of Ba2Ti13O22 and Ba4Ti2O27 phases, depending on annealing temperature and Ba:Ti atomic ratio. Highly pure barium titanate with cubic perovskite structure achieved with Ba:Ti = 50:50 atomic ratio at the high temperature of 800 °C, whereas pure barium titanate with hexagonal structure obtained for the same atomic ratio at the low temperature of 500 °C. Transmission electron microscope revealed that the crystallite size of both hexagonal- and perovskite-BaTiO3 phases reduced with increasing the Ba:Ti atomic ratio, being in the range 2–3 nm. Scanning electron microscope analysis revealed that the average grain size of barium titanate thin films decreased with an increase in the Ba:Ti atomic ratio, being in the range 28–35 nm. Moreover, based on atomic force microscope images, BaTiO3 thin films had a columnar-like morphology with high roughness. One of the highest specific surface area reported in the literature was obtained for annealed powders at 550 °C in the range 257–353 m2g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kim YI, Jung JK, Ryu KS (2004) Mater Res Bull 39:1045

    Article  CAS  Google Scholar 

  2. Hu MZC, Payzant VKEA, Rawn CJ, Hunt RD (2000) Powder Technol 110:2

    Article  CAS  Google Scholar 

  3. Kwei GH, Lawson AC, Billinge SJL (1993) J Phys Chem 97:2368

    Article  CAS  Google Scholar 

  4. Kwon SW, Yoon DH (2007) J Eur Ceram Soc 27:247

    Article  CAS  Google Scholar 

  5. Kwon SW, Yoon DH (2007) Ceram Int 33:1357

    Article  CAS  Google Scholar 

  6. Yen FS, Hasing HL, Chang YH (1995) Jpn J Appl Phys 34:6149

    Article  ADS  CAS  Google Scholar 

  7. Ihlefeld JF, Borland WJ, Maria JP (2008) J Mater Sci 43:4264. doi:10.1007/s10853-008-2618-x

    Article  ADS  CAS  Google Scholar 

  8. Yaseen H, Baltianski S, Tsur Y (2007) J Mater Sci 42:9679. doi:10.1007/s10853-007-1944-8

    Article  ADS  CAS  Google Scholar 

  9. Hung KM, Hsieh CS, Yang WD, Sun YJ (2007) J Mater Sci 42:2376. doi:10.1007/s10853-006-1452-2

    Article  ADS  CAS  Google Scholar 

  10. Wang L, Liu L, Xue D, Kang H, Liu C (2007) J Alloys Compd 440:78

    Article  CAS  Google Scholar 

  11. Ischenko V, Pippel E, Ko¨ferstein R, Abicht HP, Woltersdorf J (2007) Solid State Sci 9:21

    Article  ADS  CAS  Google Scholar 

  12. Baeten F, Derks B, Coppens W, van Kleef E (2006) J Eur Ceram Soc 26:589

    Article  CAS  Google Scholar 

  13. Jhung SH, Lee JH, Yoon JW, Hwang YK, Hwang JS, Park SE, Chang JS (2004) Mater Lett 58:3161

    Article  CAS  Google Scholar 

  14. Zhang S, Jiang F, Qu G, Lin C (2008) Mater Lett 62:2225

    Article  CAS  Google Scholar 

  15. Harizanov O, Harizanova A, Ivanova I (2004) Mater Sci Eng B106:191

    Article  CAS  Google Scholar 

  16. Novak Z, Knez Z, Ban I, Drofenik M (2001) J Supercrit Fluids 19:209

    Article  CAS  Google Scholar 

  17. Matsuda H, Kobayashi N, Kobayashi T, Miyazawa K, Kuwabara M (2000) J Non-Cryst Solids 271:162

    Article  ADS  CAS  Google Scholar 

  18. Kumazawa H, Masuda K (1999) Thin Solid Films 353:144

    Article  ADS  CAS  Google Scholar 

  19. Cheung MC, Chan HLW, Zhou QF, Choy CL (1991) Nanostruct Mater 11:837

    Article  Google Scholar 

  20. Tangwiwat S, Milne SJ (2005) J Non-Cryst Solids 351:976

    Article  ADS  CAS  Google Scholar 

  21. Fujihara S, Schneller T, Waser R (2004) Appl Surf Sci 221:178

    Article  ADS  CAS  Google Scholar 

  22. Lee B, Zhang J (2001) Thin Solid Films 388:107

    Article  ADS  CAS  Google Scholar 

  23. Lide DR (2007) Handbook of chemistry and physics, 87th edn. CRC Press, Ohio, p 4

    Google Scholar 

  24. Guo W, Datye AK, Ward TL (2005) J Mater Chem 15:470

    Article  CAS  Google Scholar 

  25. Mohammadi MR, Cordero-Cabrera MC, Ghorbani M, Fray DJ (2006) J Sol–Gel Sci Technol 40:15

    Article  CAS  Google Scholar 

  26. Mohammadi MR, Cordero-Cabrera MC, Fray DJ, Ghorbani M (2006) Sens Actuators B: Chem 120:86

    Article  Google Scholar 

  27. Kishi A, Toraya H (2004) Rigaku J 21:25

    CAS  Google Scholar 

  28. Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley Publishing Company, Inc., London, p 99

    Google Scholar 

  29. Liu X, Yang J, Wang L, Yang X, Lu L, Wang X (2000) Mater Sci Eng A 289:241

    Article  Google Scholar 

  30. Ivanova T, Harizanova A, Surtchev M (2002) Mater Lett 55:327

    Article  CAS  Google Scholar 

  31. Socrates G (1994) Infrared characteristic group frequencies: tables and charts. Wiley, England, p 6 (62 and 237)

    Google Scholar 

  32. Cho WS (1998) J Phys Chem Solids 59:659

    Article  ADS  CAS  Google Scholar 

  33. Takaoka GH, Hamamo T, Fukushima K, Matsuo J, Yamada I (1997) Nucl Instr Meth Phys Res B 121:503

    Article  ADS  Google Scholar 

  34. Mohammadi MR, Fray DJ (2007) Acta Mater 55:4455

    Article  CAS  Google Scholar 

  35. Dicken MJ, Diest K, Park YB, Atwater HA (2007) J Cryst Growth 300:330

    Article  ADS  CAS  Google Scholar 

  36. Canulescu S, Dinescu G, Epurescu G, Matei DG, Grigoriu C, Craciun F, Verardi P, Dinescu M (2004) Mater Sci Eng B 109:160

    Article  Google Scholar 

  37. Webb PA, Orr C (1997) Analytical methods in fine particle technology. Micromeritics Instrument Corporation, USA, p 55

    Google Scholar 

Download references

Acknowledgement

The authors wish to acknowledge Mr. David Nicol for his help with TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadi, M.R., Rad, A.E. & Fray, D.J. Water-based sol–gel nanocrystalline barium titanate: controlling the crystal structure and phase transformation by Ba:Ti atomic ratio. J Mater Sci 44, 4959–4968 (2009). https://doi.org/10.1007/s10853-009-3758-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3758-3

Keywords

Navigation